Skip to main content

Save The Student - Shop


An Introduction to Statistical Learning: with Applications in R (PDF eBook) 2nd ed. 2021

eBook by James, Gareth/Witten, Daniela/Hastie, Trevor

An Introduction to Statistical Learning: with Applications in R (PDF eBook)

£54.99

ISBN:
9781071614181
Publication Date:
29 Jul 2021
Edition:
2nd ed. 2021
Publisher:
Springer Nature
Imprint:
Springer
Pages:
607 pages
Format:
eBook
For delivery:
Download available
An Introduction to Statistical Learning: with Applications in R (PDF eBook)

Description

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of nave Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.

Contents

Preface.- 1 Introduction.- 2 Statistical Learning.- 3 Linear Regression.- 4 Classification.- 5 Resampling Methods.- 6 Linear Model Selection and Regularization.- 7 Moving Beyond Linearity.- 8 Tree-Based Methods.- 9 Support Vector Machines.- 10 Deep Learning.- 11 Survival Analysis and Censored Data.- 12 Unsupervised Learning.- 13 Multiple Testing.- Index.

Accessing your eBook through Kortext

Once purchased, you can view your eBook through the Kortext app, available to download for Windows, Android and iOS devices. Once you have downloaded the app, your eBook will be available on your Kortext digital bookshelf and can even be downloaded to view offline anytime, anywhere, helping you learn without limits.

In addition, you'll have access to Kortext's smart study tools including highlighting, notetaking, copy and paste, and easy reference export.

To download the Kortext app, head to your device's app store or visit https://app.kortext.com to sign up and read through your browser.

This is a Kortext title - click here to find out more This is a Kortext title - click here to find out more

NB: eBook is only available for a single-user licence (i.e. not for multiple / networked users).

Back

Save The Student